Numerical computation for the non-cutoff radially symmetric homogeneous Boltzmann equation
نویسندگان
چکیده
منابع مشابه
Gelfand-shilov Smoothing Properties of the Radially Symmetric Spatially Homogeneous Boltzmann Equation without Angular Cutoff
We prove that the Cauchy problem associated to the radially symmetric spatially homogeneous non-cutoff Boltzmann equation with Maxwellian molecules enjoys the same Gelfand-Shilov regularizing effect as the Cauchy problem defined by the evolution equation associated to a fractional harmonic oscillator.
متن کاملSmoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff
For regularized hard potentials cross sections, the solution of the spatially homogeneous Boltzmann equation without angular cutoff lies in Schwartz’s space S(RN ). The proof is presented in full detail for the two-dimensional case, and for a moderate singularity of the cross section. Then we present those parts of the proof for the general case, where the dimension, or the strength of the sing...
متن کاملExistence Theory for the Radially Symmetric Contact Lens Equation
In this paper we present a variational formulation of the problem of determining the elastic stresses in a contact lens on an eye and the induced suction pressure distribution in the tear film between the eye and the lens. This complements the force-balance derivation that we used in earlier work [K. L. Maki and D. S. Ross, J. Bio. Sys., 22 (2014), pp. 235–248]. We investigate the existence of ...
متن کاملNumerical Approximation of Blow-Up of Radially Symmetric Solutions of the Nonlinear Schrödinger Equation
We consider the initial-value problem for the radially symmetric nonlinear Schrödinger equation with cubic nonlinearity (NLS) in d = 2 and 3 space dimensions. To approximate smooth solutions of this problem, we construct and analyze a numerical method based on a standard Galerkin finite element spatial discretization with piecewise linear, continuous functions and on an implicit Crank–Nicolson ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Sciences
سال: 2018
ISSN: 1539-6746,1945-0796
DOI: 10.4310/cms.2018.v16.n8.a6